

GEO-ECOLOGICAL STUDIES ON DIVERSITY OF MACRO FLORA IN URPAD BEEL, GOALPARA DISTRICT, ASSAM

Pallabi Deka and Ratumoni Das

Department of Geography, Jagiroad College, Jagiroad, Morigaon-782410 (Assam) India.

Abstract

The geo-ecological study on diversity of macro flora in Urpad beel has been carried out from January 2018 to December 2018. The study reveals that Poaceae is dominant family among the families in the urpad beel. Diversity of macro flora is decreasing in the study area due to degradation of habit and altering of geo-ecological condition and physico-chemical properties of water by the anthropogenic activities. Human inducing encroachment, agricultural practices and fishing in the beel are greatly altering the ecological conditions and it leads to extinction of some plant spices from the study area. Since, it is surrounded by human habitat tribal villages; it is under great threat of further extinction of biotic community.

Key words: Geo-ecology, diversity, macro flora, wetland, Goalpara district.

Introduction

Wetlands play a vital role in maintaining the geoecological system of the earth. Ecologically wetlands are considered as a great significant for an area as they support different food chain, food webs, agriculture and allied sectors, sequestration of carbon, pollution abatement, control flood, regulate hydrological cycle, recharge ground water, retention of toxics, trapping of energy and shelter to large numbers of flora and fauna having great ecological and economical value, maintain biodiversity, support tourism and has cultural significance. Wetlands are the unique ecological resources which are providing numerous products and services to the human society. Wetlands are functioning as source of water for irrigation, fisheries, non-timber forest products, water supply and recreation to human society.

Wetlands occur where the land is covered by water or where the water table is at or near the surface of the land. Wetlands are the only ecosystem in the world whose conservation has been adopted as early as 1971 by the international convention (Ramsar Convention). Ramsar Convention defined wetlands as "areas of marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh,

*Author for correspondence: E-mail: pallabi123deka@rediffmail.com

brackish or salt, including areas of marine water the depth of which at low tide does not exceed six meters". UICN define wetlands as "all the submerged or water saturated lands, natural or man-made, inland or coastal, permanent or temporary, static or dynamic, or vegetated or non vegetated, which necessarily have a land-water interface".

Assam is located in the heart of the hill states of North East India and it is drain by the two river system, the Brahmaputra river and the Barak river system. These two riverine tracts of Assam provide favorable geoecological conditions for the growth and development of the wetlands and they are most common and integral geomorphic features of the fluvial landscape of Assam. The origin and growth of the wetlands directly linked with geo-physical conditions, tectonic evaluation, hydrologic and fluvio-geomorphic characteristics of the rivers of the region.

Assam Remote Sensing Application Center (ARSAC), 1997, has been recorded the total number of wetlands in Assam is 3474 and total area covered by wetlands is 1,01,229.4 ha., its accounts for 1.29% of total geographical area of the state (Deka and Goswami, 1992 and Bora, 2001). Goalpara districts shares 165 wetlands and 3832.5 ha. from the total number of wetlands and

Table 1: List of plants in Urpad Beel, Goalpara district.

Sl. No.	Botanical name	Family	Habit
1	Ageratum conizoides L.	Asteraceae	MA
2	Alpinia allughas (Retz.) Rose.	Zingiberaceae	EA
3	Alternanthera sessilis L.	Amaranthaceae	MA
4	Alternanthera philoxeriodes L.	Amaranthaceae	EA
5	Amaranthus spinosus L.	Amaranthaceae	MA
6	Amaranthus vieidis L.	Amaranthaceae	MA
7	Arundo donax L.	Poaceae	EA
8	Brachiaria ramosa L. Stap.	Poaceae	EA
9	Carex spiculata Boott.	Cyperaceae	EA
10	Ceratophyllum demersum L.	Ceratophylaceae	FS
11	Colocasia esculenta L. School.	Araceae	EA
12	Commelina benghalensis L.	Commelinceae	MA
13	Cynodon dectylon L. Pers.	Poaceae	MA
14	Cyperus brevifolia (Rottb.) Hassk.	Cyperaceae	MA
15	Cyperus rotundus L.	Cyperaceae	MA
16	Dichrocephala latifolia D.C.	Asteraceae	MA
17	Echinochloa colonum L.	Poaceae	EA
18	Cleome viecosa L.	Capparidaceae	MA
19	Cassia tora L.	Caesalpinaceae	MA
20	Centella assiatica Urban	Apiaceae	MA
21	Chromolaena odorata L.	Asteraceae	MA
22	Eclipta alba L. Hassk.	Asteraceae	MA
23	Eichhornia crassipes (Mart.) Solms.	Pontederiaceae	FF, EA, MA
24	Elecharis conggesta (Spreng.) Don.	Cyperaceae	MA
25	Enhydra fluctuans Lour.	Asteraceae	EA
26	Euryale ferox Salisb.	Nympheaceae	FA
27	Hydrilla varticillata (Lf.) Royle.	Hydrocharitaceae	SA
28	Hydrocotyle rotundifolia D.C.	Poaceae	MA
29	Hymenachne pscudointerrupta (C.Muctt)	Poaceae	EA
30	Ipomea aquatica Forsk	Convolvulaceae	EA
31	Ipomea carnea Jaeq. Var. fistulosa	Convolvulaceae	EA
32	Ipomea obscura (L) Ker Gawler.	Convolvulaceae	MA
33	Juncus prismatocarpus R. Br.	Juncaceae	EA
34	Jussiea repens L.	Onagraceae	EA
35	Leersia hexabdra Sw.	Poaceae	EA
36	Lemna perpusila Torrey.	Lemnaceae	FF
37	Lindernia indica L. Druce.	Scrophulariaceae	FA
38	Ludwigia hyssipifolia (G.Don) Exell.	Onagraceae MA	
39	Ludwigia prostrata Roxb.	Onagraceae	MA
40	Melastoma malabathricum L.	Melastomatacea	EA
41	Mikania micrantha H. Bk.	Asteraceae	MA
42	Leucus plukentii (Roth) Spreng.	Lamiaceae	MA
43	Mimosa pudica L.	Mimosaceae	MA
44	Monochoria hastata L. (Sotms)	Pontederiaceae	EA
45	Nojas indica (Willd) Champ.	Najadaceae	SA
46	Nelumbo nucifera Gaetrn.	Nympheaceae	FA
40	тченитов писцети Сасин.	Tympheaceae	1.74

total area under wetlands of the state respectively.

The wetlands of riverine origin are categorized into fresh water lakes, ox-bow lakes or abandoned channels, marshy tracts, seasonally water-logged areas and swampy and marshy areas. Urpad beel in Goalpara district is under the swampy and marshy category and it is permanently covered by water, mostly having shrubs. The lake like water bodies or swampy and marshy areas are locally known as "beels" "Jalah", "Doloni", "Pitoni", "Doba" and "Hola", covered with floating aquatic plants and they mostly found close to the river banks.

Geographically, the selected study area Urpad beel is located between 25°282 to 26°152 N Lat. and 89°422 to 90°152 E Long. to south of the Brahmaputra river of Goalpara district, Assam (Map.1). Total area covered by the Urpad beel is about 649.38 ha. The average annual rainfall in the district is 1614 mm and the average minimum and maximum temperature are 10°C and 33°C respectively. Most of the rainfall received during the monsoon season. The wetland is fed by the Jinjiram river during the flood which is flowing at the south of the wetland and flowing parallel to the Brahmaputra in western direction before it meets the Brahmaputra at Bahadurghat of the Bangladesh. Urpad beel is located between the levee formed by the Brahmaputra in the north and Garo hills of Meghalaya in the south. The wetland is geologically formed by Archean Gneissic complex consisting of granites, schists, gneisses and amphibilities. The Archean Gneissic is concealed at the basement by the new alluvial soil and formed its valleys. From

Table 1 contd....

Table 1 contd....

Sl. No.	Botanical name	Family	Habit
47	Nymphoides cristata (Roxb.) Oktze	Nympheaceae	FA
48	Nymphaea nouchali Buern. F.	Nympheaceae	FA
49	Oxalis corymbosa L.	Oxalidaceae	MA
50	Oxalis corniculata L.	Oxalidaceae	MA
51	Panicum maximum Jacq.	Poaceae	EA
52	Panicum paludosum Roxb.	Poaceae	EA
53	Pistia stratioetes L.	Araceae	FF
54	Plantago major L.	Plantaginaceae	MA
55	Polygomum galbrum Willd.	Polygonaceae	EA
56	Polygomum hydropiper L.	Polygonaceae	MA
57	Polygonum orientale L.	Polygonaceae	MA
58	Ranunculus sclheratus L.	Ranunculaceae	MA
59	Rumax dentatus L.	Polygonaceae	MA
60	Rumax nepalensis Spreng.	Polygonaceae	MA
61	Sagittaria sagittifolia L.	Alismataceae	EA
62	Saselia dancifolium C.B.Cl.	Apiaceae	EA
63	Scirpus articulatus L.	Cyperaceae	Ea
64	Scirpus mucronatus L.	Cyperaceae	MA
65	Utricularia Flexuosa (Vaul)	Lentibulariaceae	FS
66	Vallisneria spiralis L.	Hydrocharitaceae	SA
67	Xanthium strumerium L.	Asteraceae	MA

N.B.: MA= Marshy Amphibious, FA: Floating Anchored, SA= Submerged Anchored, EA= Emergent Amphibious, FF= Free floating, FS= Free Submerged.

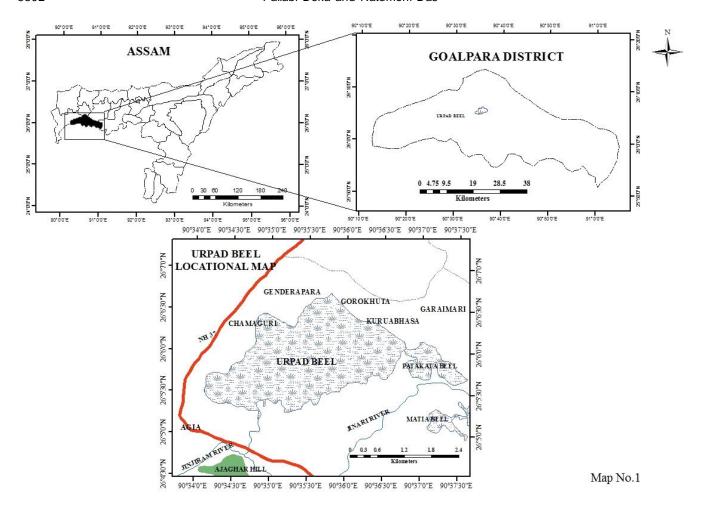
Table 2: Seasonal variation of physico-chemical factors at Urpod Beel of Goalpara district, Assam.

Season	Parameter			
	Water Temperature °C	рН	Dissolve Oxygen (ppm)	
Winter	21.1	9.0	7.0	
Summer	26.2	8.3	5.8	

the geographical antiquity, the numerous low hills called Archaean inselberge found scattered near Goalpara district and outline portion of Shillong plateau and represent the oldest rocks (Allen, 1905 and Evans, 1936 and Deka et al., 2010). Hamilton (1814) had reported that there was a luxuriant sal (Shorea robusta L). The large scale deforestation and destruction of natural habitats, like forest, grassland and wetlands seems inevitable (Choudhury, 2001), since large percentage of population in Assam, lives in rural areas and depends on agriculture for their livelihood. Physico-chemical properties of wetland like p^H ranges between 7.2 to 8.5 which is highly alkaline due to its waterlogged nature of the wetland. Water temperature ranges between 6.2-19.6, dissolved oxygen ranges from 6.4 mg/l to 10.2 mg/l, alkalinity ranges from 92.2mg/l to157.3 mg/l, it increases during winter

due to low amount of rainfall.

Materials and Methods


Urpad beel area is under Balijana revenue circle of Goalpara district. The study has been conducted from January 2018 to December 2018. After collection of sample identification and estimation of plants were done. Location map for the study area was prepared under GIS environment (Map 1). To locate the study area on map GPS points were collected from the ground and maps were prepared using ArcMap 10 software. The physico-chemical parameters like water temperature, pH and dissolved oxygen were tested in laboratory using thermometer, electric pH meter and Winkler's method respectively and required samples were collected between 7am to 9am.

Results and Discussions

Geo-environmental factors greatly influence on the ecological habit of plat community of the study area. The factors like temperature, p^H and dissolved oxygen greatly affect on the growth and development of plant and animal communities. In the study area poaceae is the dominant family among all the families (Table 1).

Due to anthropogenic factors like human encroachment, agricultural practices and fishing are greatly impact on the ecological conditions of biotic community in the wetland to a great extent. Since the wetland is surrounded by villages the rate of encroachment for human settlement and agricultural practices are very high which is leading to destroying the natural habit of the plants and animals. Farmers are used chemical fertilizer and pesticides for agricultural production which leads to destroying of natural qualities of water and makes the wetlands unsuitable for plants and animals survival. Fishing is primary activity of tribal people inhabiting in the surrounding villages of the wetland which is responsible for disappearing and destroying of different spices of plant and animals from the wetland permanently.

Another important geomorphological factor which affects the ecological condition of the wetland is

sedimentation. Due to back flow of water from the Jinjiram river during the flood carries large amount of sediments to the wetland and leads to rise of its bed. Plants which are live in deep water, they are gradually disappearing from the wetland due to their less tolerance level.

Acknowledgement

Authors are thankful to Dr. Sheemanta Jyoti Deka Department of Botany, Goalpara College, Goalpara for providing help and suggestion in preparation of this paper.

References

Allen, B.C. (1905). Gazetteers of Assam State (District Goalpara) Maligaon, Guwahati; Sreeguru Press.

Bora, A.K. (2001). Physical background, Geography of Assam, (Ed.) (Bhagabati, A.K., A.K. Bora and B.K. Kar) Rajesh

Publication, New Delhi, 18-35.

Choudhury, A.K. (2001). Biodiversity Geography of Assam, New Delhi, India, Rajesh Publications.

Deka, S.J., G.C. Sarma, R. Baishya and S.P. Deka (2010). Phenological study of Macrophytes of some selected wetlands of Goalpara district, Assam, India, *PlantArchives*, **10**(1): 165-170.

Deka, S.K. and D.C. Goswami (1992). Hydrology, sediment characteristics and depositional environment of wetlands: A case study of Deepor Beel, Assam Science Society, **34(2):** 62-84.

Evans, P. (1936). Trans of Mineralogical and Geological Institute of India, **27:** 161-253.

Hamilton, F.B. (1814). An account of Assam 1808-1814, Published by Sree Guru Press, Maligaon, Guwahati (Reprinted).